Parametricity in Go

One of my objections to Erlang is that despite paying the price of being a functional language, it often fails to reap the advantages. An example of this is in testability; nominally, a purely functional bit of code ought to be easier to test than the imperative equivalent, because it is just a matter of setting up your parameters and checking the results, with no IO or state in between.

Erlang doesn't make this impossible, but it's less convenient than the brochure promises. The core of your application is generally locked up in the various gen_* handlers. These handlers have very stereotyped ways of being called, which include the full state of the thing being tested. I find this very tedious to test, for two reasons: 1. Every test assertion must define some sort of "complete state" for the handler, which is probably full of real-world concerns in it. In particular if it has further messages it is going to send, those are often relatively hard-coded somehow... an inconvenient-to-mock Mnesia entry, an atom-registered process name, etc. (Erlang programs end up having a surprising amount of global state like that.) 2. If you want to test some sort of sequence of events, you are responsible for threading through the code, or manually invoking the proper gen_* start up functions, or something. It's possible to refactor your way out of this mess, but in practice it's a lot of work for the reward. So many of the tools you could use in other languages aren't available.

Go, in theory, ought to be harder to test than Erlang, being an imperative programming language. In practice, I'm finding it much easier, and I'm doing a lot more testing in it.

Sum Types in Go

A couple of months back, I analyzed whether I wanted to propose switching to Go for work. I've still technically got the blog post with the results of that analysis in the pipeline (though who knows when I'll get it up), but there's a part of it that keeps coming up online, and I want to get this bit out faster. It's about whether Go has "sum types".